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Introduction

The behaviour of beams under bending is so complex.

The stress, strain, dimension, curvature, elasticity, are all related,
under certain assumption, by the theory of simple bending. This
theory relates to beam flexure resulting from couples applied to the
beam without consideration of the shearing forces.
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Notation

These notation are used mn the next slides:

£ = strain

E =Young's Modulus = 6 /e (N/m?)

y = distance of surface from neutral surtace (m).

p = Radius of neutral axis (m).

[ = Moment of Inertia (m* - more normally cm?)

/. = section modulus = I'y___(m? - more normally cm?)
' = Force (N)

X = Distance along beam

0 = detlection (m)

0 = Slope (radians)

c = stress (N/m?) 13



Beam Bending Theory

Consider the sponge beam
shown:

Plane sections before bending
were parallel to each other and
perpendicular to the centre
lie of the beam.

Plane sections REMAIN plane
and perpendicular to the centre
line of the beam after bending.

Before bending

After bending
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Theory of Simple Bending

A straight bar of homogeneous material is subject to
only a moment at one end and an equal and opposite
moment at the other end.

Assumptions

1.The beam is symmetrical about Y-Y.

2.The traverse plane sections remain plane and normal
to the longitudinal fibers after bending (Beroulli's
assumption).

3.The fixed relationship between stress and strain
(Young's Modulus)for the beam material is the same for
tension and compression ( 0= E.e).
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Theory of Simple Bending
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Strains in Beams

Consider two section very close together (AB and CD).
After bending the sections will be at AB' and C'D' and are no longer
parallel.
AC will have extended to A'C' and BD will have compressed to B'D*.
The line EF will be located such that 1t will not change in length.
This surtace 1s called neutral surface and its intersection with Z 7 1s called
the neutral axis.
The development lines of A'B' and C'D' intersect at a point 0 at an angle
of 0 radians and the radius of E'F' = p
Let y be the distance(E'G") of any layer H'G' originally parallel to EF.
H'G/E'F' =(p +y)0 /RO =(p +y)/ p
And the strain € at layer H'G' =
e =MHG-HG)/HG=MH'G-HG)/EF =
e =[(p+y)b-p 6]/pb

e =y/p 18



Stresses 1n Beams

The accepted relationship between stress and strain 1s
o=FE.¢
Therefore,
c=Ec=E y/p

o ’f" _E' :.}f f,:') }C)

c=Fy/p or c/v=L/p

Theretore, for the illustrated example, the tensile stress 1s directly related to the
distance below the neutral axis. The compressive stress 1s also directly related to

the distance above the neutral axis.
Assuming E 1s the same for compression and tension the relationship 1s the same.
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Neutral axis

o Z -— %\
N~
.. . ey . . . ) '
As the beam 1s 1n static equilibrium and 1s only subject to = K:ERZE?—ZZ#

. . . i i | { . ’
moments (no vertical shear forces) the forces across the ' (,f‘ L '
section (AB) are entirely longitudinal and the total R L ‘|

. -~ i . - > J-"
compressive forces must balance the total tensile forces. Y /

The internal couple resulting from the sum of ( 6.dA .y) over the whole section
must equal the externally applied moment.
Y (c.86A ) =0 therefore Y (c.z8y)=0

= j_E E i = E Iy =
As o= R therefore RE (y.3A ) =0 and R):(y. ziy) =0

This can only be correct 1f Z(yoa) or X(v.z.0y) 1s the moment of area of the
section about the neutral axis. This can only be zero 1f the axis passes through
the centre of gravity (centroid) of the section.
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Bending Moment “Elastic Case” -

The mternal couple resulting from the sum of ( 6.dA.y) 7 I

L&)

over the whole section must equal the externally applied =
moment. !

Therefore the couple of the force resulting from the stress on each area
when totaled over the whole area will equal the applied moment.

The force on each area element = o. 8A = o. Z. 8y

The resulting moment = y.o.8A = a. Z. ¥. 8Y
The total moment M =Z{y.a.ﬁﬂ. )} and E (a.2.y by)
Using Ey = o
R
= 2 E 2.
M = RE{y . 8A ) and R Y (z.y“ay)
Z(y 2 5A ) is the Moment of Inertia of the section(l)

M _

From the above the following important simple beam | -
bending relationship results

{

'-RH.%%

Alm
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Bending Moment “Elastic Case”

M — Bending moment or Moment may vary depending on the load example
I — Moment of Inertia.
I = bd?/12 for rectangular section and y = d/2
[ = n(D*, — D*)/64 for hollow pipe and y = D_/2
G — Stress due to bending moment.
E — Modulus of Elasticity or Young’s modulus.
p- Radius of curvature due to bending.
y — distance measured from section centroid

22



Bending Stress “Elastic —Plastic Case”

The stress distribution beyond elastic limit may not be linear since 1t
follows the stress strain curve under either tensile or compressive
stresses respectively. In addition, the relation between stresses and
strains may not be linear as well. There 1s no definite relation for
bending stresses beyond yielding up until this time. The bending stresses
should be calculated on a case-by case basis.
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Beam Bending Test

Extremely low ductility “brittle materials” does not allow measuring their
mechanical properties (specially strength and stiftness) accurately by
conventional tensile test, which 1s widely used for metals.
Brittle Materials, including cast 1iron, concrete, wood, ceramics, are tested
Flexure Test by (Transverse Beam Bending Test).
There are two standard Flexure Test methods:

or

In this test a specimen with round, rectangular or flat cross-section 1s placed
on two parallel supporting pins as follows;

The supporting and loading pins are mounted in a way, allowing their free
rotation about:

axis parallel to the pin axis;

axis parallel to the specimen axis.

This configuration provides uniform loading of the specimen and prevents
friction between the specimen and the supporting pins. 2



4-point Flexure Test

In this test the loading force 1s applied by
means of two loading pins with a distance
between them equal to one-third of the

distance between the supporting pins (span).

The test provides at least the middle half of
the specimen between the applied loads to
be subjected to constant bending moment
and zero shear. Yet the test 1s slightly more
complicated. '

Longitudinally
l rotating,
cross-tilting
\stress roller
I

l

n

Longitudinally rotating,
not cross-tilting

support roller /(7
Longitudinally rotating.
cross-tilting

support roller

4 - point
Flexure test

Force Force
Loading pins
<« ,‘I / . |
u

N S
Supporting pins

www._substech

com
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Moveable,

cross-ilting
/ stress roller

3-point Flexure Test P

The loading force 1s applied in the middle
Longitudinally rotating,

(mid-span) by means of single loading pin.  notcross-iiting
support roller O

The test is much simpler to be carried out. R

Yet, only one single section 1s subjected to support roller
maximum bending i3

3 - point
Flexure test

moment in the whole e A e
specimen. : ’| ot ’| |
== Z
N Supporting pins

www substech.com
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3-point Flexure Test 4-point Flexure Test

— 1 1
— | .

O Shear Stress
W | \_E_/ - = - : .--
: Moment

28



Benha University Mechanical Department
Shoubra Faculty of Engineering 15t year Mech.

10.03.2019 — Week 5

The mechanical properties
after bending test

Prof. Farida Sayed Ahmed
Dr. Mahmoud Khedr



Mechanical Properties in Flexure

- Concrete C
% - Concrete B
S
Dial Strain Gauge is E Conerete A
used to measure the E _
mid span deflection 6
As a result of the loading, the specimen bends, causing |
deformation, tension stresses in its convex side and
compression stress in the concave side.
The applied load and the mid span deflection are n ' ' '
measured for every load value. The results are then , ]
Mid span deflection 6

plotted in the load-deflection diagram.
30



Proportional Limit

Proportional limit 1s the maximum stress where stress 1s proportional to the
strain.

Proportional limit load 1s defined as the end of the straight line. Thus, if the
proportional limit load 1s Pp; and the original cross sectional area = Ao, then:

Maximum bending moment @ Prolortional limit = Mpy

Proportional Limit =6p; = Mp * Y, /1

My, =Py * L/4 (for 3-pomt beam bending test)

Y .« — h/2 for rectangular or square cross sections.
= D_/2 for circular cross sections.

I, = bh?/12 for rectangular section

I = n(D?*, — D*)/64 for hollow pipe.
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Stiffness “Young’s Modulus™

The load deformation diagram for most engineering materials exhibit a linear
relationship between applied load and deformation within the elastic region.
Consequently, an increase 1n stress causes a proportionate increase in strain.
The relation between the modulus of elasticity or Young's modulus, Applied
load, measured detflection and the beam property 1s give as follows;

Py L3

32



Modulus of Rupture

Modulus of Rupture (Flexural Strength) is the stress of the extreme fiber of a specimen at its
failure in the Flexure Test.

Modulus of rupture 1s calculated using the same formulae for simplicity and since there is no
exact solution until now :

Maxmuum bendimng moment (@ maximum load =M, _

Proportional Linut = MoR = M. =Y I

M, =P, _* L4 (for 3-point beam bending test)

Y .. = W2 forrectangular or square cross sections.
=D_/2 for circular cross sections.

I = bh*/12 for rectangular section

I =n(D* — D*)/64 for hollow pipe.
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Modulus of Resilience

A material's resilience represents the ability of the material to absorb energy
without any permanent damage to the material. In particular, when the load a
reaches the proportional limit, the strain-energy density, 1s calculated by and 1s
referred to as the modulus of resilience Ur. Mathematically 1t 1s the area under
the straight line “elastic region” of the load-detormation curve per unit volume.

P
. Ppp *0p % . B
' *A K] 3
’ 3 !
‘% o B
|

Mid span deflection 6
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Modulus of Toughness

Another important property of a material 1s the modulus of toughness, Ut. This
quantity represents the entire area under the stress-strain diagram, and therefore
it indicates the strain energy density of the material just betfore 1t fractures.

2*%p _*0

max max

S
I
~

.

Applied Load P

Mid span deflection 6
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Cold Bent Test

Rebar 1s bent into a multitude of different shapes to
remforce concrete structures. To ensure that the
material 1s capable of being bent without significant
strength loss cold bend test 1s used as a quality
control check to ensure the bar's formability and the y,
existence of ductility. This test typically requires the } : »f" .

sample to be bent around a forming pin to 180°

angles, and visually inspected for development of any
surface cracks. International standards specify
requirements for the radius of the forming pin R, as a
function of the bar diameter d_ as follows;

R=d, d < 25mm,
R=1.5*d, d,<25mm,

In addition, most rebar standards require that the
bend test be completed in one continuous test stroke.



Cold Bent Test
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Mode of Failure

-t

iE

25 - e An'f‘sg
R T

Tension Compression  Shear
Lack of ductility Small pin radius

Cold Pent Test
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Flexure Shear

Flexure shear 1s produced due to
the action of shearing force
accompanying the bending of the ol |
beams under transverse loads. ‘ %

Consider a segment of the beam
shown. The shear load on the
vertical surfaces are generated by
shear stress that can be calculated
by the following process.

N b
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Flexure Shear Stresses

To calculate the shear stress T generated
from the shear load V consider removing
the segment of the beam shown 1n red.

By symmetry of stress, shear stresses on
the cross section results in equal shear
stresses on the plane perpendicular to the
cross section as shown. This shear stress
results in a shear load ..




Flexure Shear Stresses

Therefore, equilibrium 1n the axial direction for this segment 1s

written as: . (M + AM)Y - My
I"'_; + J [—l: - ]ri-q.— J [— T:l ]L'II‘J%:U
' ! . A
A A
AM ¢

e ii | 1lfr'-:!L"'].
! w
- -"‘._1+

The integral 1n this expression 1s the first moment of the

area A" about the neutral axis. This first moment will be denoted
by (so that:
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Flexure Shear Stresses

The shear stress can now be calculated from the shear load by
dividing it by the area 1t 1s applied on to get

Foo _AM ()

T=- -
bAX Ax b
.
Taking the limitas Ax —0 gives = _=
ﬂ?'
fj‘ Tlr"r -
where we note that === = I/
dx
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Calculating the first moment of the area Q

The first moment of the area can be calculated from the relation

. +:
=AY ad _ J_vc*

where A" is the area of the part of the cross section that is Heutral axis
considered, 1s the vertical distance from the centroid of the
cross sectionto the centroid of A"

For composite areas, the first moment of area can be calculated
for each part and then added together. The equation for () 1n this
case 1s »
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Distribution of flexure shear
stresses In standard sections
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Distribution of flexure shear

stresses In standard sections
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Distribution of flexure shear
stresses In standard sections
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